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Abstract

Quantitative sociologists and social policymakers are increasingly interested in local context. Some city-

specific studies have developed new primary data collection efforts to analyze inequality at the neighbor-

hood level, but methods from spatial microsimulation have yet to be broadly used in sociology to take

better advantage of existing public data sets. The American Community Survey (ACS) is the largest

household survey in the United States and indispensable for detailed analysis of specific places and popu-

lations. The authors propose a technique, tree-based spatial microsimulation, to produce “small-area”

(census-tract) estimates of any person- or household-level phenomenon that can be derived from ACS

microdata variables. The approach is straightforward and computationally efficient, based only on pub-

licly available data, and it provides more reliable estimates than do prevailing methods of microsimula-

tion. The authors demonstrate the technique’s capabilities by producing tract-level estimates, stratified by

race/ethnicity, of (1) the proportion of people in the census-tract population who have children and work

in an essential occupation and (2) the proportion of people in the census-tract population living below the

federal poverty threshold and in a household that spends greater than 50 percent of monthly income on

rent or owner costs. These examples are relevant to understanding the sociospatial inequalities dramatized

by the coronavirus disease 2019 pandemic. The authors discuss potential extensions of the technique to

derive small-area estimates of variables observed in surveys other than the ACS.
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Context is central to sociological study. Across sociological methods, qualitative stud-

ies often focus on rich description and explanation within a specific place and time.

Quantitative studies, on the other hand, try to extend empirical generalizability by

using sample designs that are representative of broader geographic or temporal con-

texts. In the literature on social stratification and inequality, these quantitative studies
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are often based on large nationally representative cohorts (e.g., the Panel Study of

Income Dynamics, the National Longitudinal Survey of Youth), in which sample sizes

and limited geographic information often prohibit stratifying results by region, let

alone by specific neighborhoods. Such work cannot easily engage the more spatially

specific context explored by ethnographers. But quantitative sociologists now increas-

ingly recognize the need to explore spatial context with far greater precision, as exem-

plified by the development of the “neighborhood effects” literature. From this

perspective, place, broadly defined, organizes social life, labor relations, institutions,

and more (Sampson 2008; Sharkey 2013; Sharkey and Faber 2014). This literature

convincingly shows that quantitative sociology needs to develop its capacity for

neighborhood-level research.

Doing so, however, will require adjusting quantitative sociology’s conventional

techniques in dialogue with traditions of geospatial analysis in economics and geogra-

phy, as we will discuss. Because of the increasingly fractal nature of social and eco-

nomic phenomena in the United States, researchers and policymakers are increasingly

interested in local estimation. As Sharkey and Faber (2014) noted, if a “place effect” is

identified, the primary questions become who is most affected and where they live.

Where is the exposure most geographically concentrated in the United States, and what

are its salient intersections with related social dimensions such as race and gender? Local

estimates of social, economic, and demographic processes provide rich insight into the

interaction of place and individual characteristics (Cagney et al. 2014; Sampson 2012;

Sharkey 2013). One approach used by quantitative sociologists so far has been to use tar-

geted, independent primary data collection projects in specific urban contexts, such as the

Project on Human Development in Chicago Neighborhoods (Sampson 2012). However,

this decentralized, unharmonized system of data collection and analysis cannot provide a

comprehensive national picture of how place increasingly structures social, health, and

environmental stratification in the United States. Using a handful of distinct local data

sets forecloses systematic comparison across the country, and the prevalence of indepen-

dent, localized data collection has led to the overrepresentation of certain urban popula-

tions, such as New York City and Chicago, in the place effects literature. The emerging

alternative is administrative linkage projects based on restricted-use data sets such as tax

returns. This work is important and compelling, but the research is time consuming,

expensive, and exclusive, inhibiting its wider use (Chetty et al. 2016, 2018). In short,

U.S. quantitative sociology’s local analysis risks being stymied.

An alternative to the strategies used so far is to make better use of all the publicly

available information provided by the American Community Survey (ACS), the larg-

est survey of U.S. households. The ACS provides extensive information on household

demographics, finances, employment, health insurance, migration, ancestry, linguis-

tics, housing conditions, and more. Given the ACS’s uniquely large sample size and

breadth of collected variables, it is indispensable for complex research questions. But

to protect respondents’ confidentiality, the ACS does not report all its data at the

census-tract (or “neighborhood”) level. As a result, research questions that pivot on

neighborhood-level dynamics in the United States often go unanswered because the

necessary information is not tabulated or made public. Sociologists using the ACS
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often try to infer nuanced answers to complex research questions by mapping several

crude tabulated indicators, or simply use data at a higher level (e.g., metropolitan-area

microdata) to answer specific research questions, thus forgoing analysis of local con-

text. There are various methods for conducting “small-area” analysis using data such

as those provided by the ACS, but these have not been fully used in sociology.

We focus on the method of “spatial microsimulation” (SM), whereby individual- or

household-level microdata originally sampled from a large geographic area are

reweighted to produce a new sample that is thought to be representative of the popula-

tion in a specific place (“small area”). The new, “local” sample is designed to be repre-

sentative with respect to a set of “constraint variables” selected by the analyst. These

variables provide a set of known, local population totals (“population constraints”),

usually sourced from a census. The original microdata are reweighted (“calibrated”) to

match these totals in aggregate, for example, the number of women aged 25 to 35

years, the number of people with college degrees, or the number of people employed

full-time. With this locally representative sample in hand, any number of place-

specific research questions can be asked and answered. Researchers can layer on addi-

tional place-specific data sets, from surface temperatures that are rising because of cli-

mate breakdown to data on local police stops, to ask complex questions. Researchers

can also use synthetic microdata to predict counterfactual scenarios or simulate policy

experiments, and they can fuse synthetic microdata with other data sets to predict new

variables at the individual- or small-area level (Zhang et al. 2014). SM is a powerful

approach, and we believe we can improve upon it.

In this article, we focus on the foundation: demographic microsimulation with ACS

data. We propose a general framework, tree-binned SM (TBSM), to provide estimates

for any small area and for any variable derived from the ACS microdata. We extend a

standard reweighting method for SM by proposing a novel decision tree framework

for selecting optimal population constraints and automated “binning” of constraint

attributes (e.g., income categories), removing the need for the researcher to arbitrarily

select constraints. Our focus on an improved method for selecting population con-

straints is essential to mitigate multicollinearity and interaction effects among candi-

date variables, and the issue of constraint selection is perhaps the weakest link in

extant microsimulation techniques. Importantly, our proposed methodology and asso-

ciated ACS-tailored code base allow maximum flexibility, providing an automated

process to derive small-area estimates across the United States, relying only on pub-

licly available data. We validate the ability of our TBSM model to replicate census-

tract estimates for various variables and locales, and we compare these results with

those derived from a conventional SM model. We discuss how sociologists can use

this method to answer timely, complex questions related to labor, housing, family, and

social policy, at the spatial scale of the neighborhood, thus allowing us to explore

fine-grained variation across local contexts. We use two examples and discuss their

relevance to both existing sociological inquiry that uses only national data and practi-

cal implications for understanding inequitable consequences of the coronavirus disease

2019 (COVID-19) pandemic: (1) the proportion of people in a census-tract population

who have children and work in essential occupations and (2) the proportion of people
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in a census-tract population living below the federal poverty threshold and in house-

holds that spend greater than 50 percent of monthly income on rent or owner costs.

BACKGROUND

History of Microsimulation

Many of the foundational ideas in computational “microsimulation” were developed

in economics. In 1957, Orcutt (1957) published “A New Type of Socio-economic

System” in the Review of Economics and Statistics, reprinted in 2007 in the

International Journal of Microsimulation (Orcutt 2007). Orcutt described how syn-

thetic microdata can be used to produce projections of complex social, labor, and

demographic systems from widely available tabulated data sets, although in this early

work, spatial resolution was not yet a concern. The work of Orcutt and colleagues

may have been the beginning of microsimulation studies, but they built on older tech-

niques for the sociological and demographic analysis of population change (Zagheni

2015); for example, the synthetic cohort life table approach central to the field of

demography can be considered a microsimulation. Indeed, the procedure described by

Orcutt (1957) involves a demographic model of marriage, divorce, fertility, and mortal-

ity rates. These foundations of microsimulation have now extended into various fields,

including contemporary statistics (multiple imputation for incomplete data) and demo-

graphy (multistate life tables) (Rubin 1987; Schafer 1997). In reviewing Orcutt et al.

(1961) for the American Sociological Review and discussing whether the methods

might be useful in sociological research, Wager (1962) wrote that the “uses discussed

often requires major commitments of funds, specialized talent, and electronic

equipment.” As we will discuss, these concerns about microsimulation continue to be

cited today, although they are far weaker obstacles than at the time of Wager’s review.

The extension of these techniques to SM first appeared in the field of geography, in

which they continue to be developed. Wilson and Pownall (1976) introduced synthetic

reconstruction techniques to spatial analysis (e.g., iterative proportional fitting) and

later extended the technique in the areas of urban analysis and transportation research

(Beckman, Baggerly, and McKay 1996; Birkin and Clarke 1988; Wilson and Pownall

1976). Methodological innovations since Wilson and Pownall have focused on devel-

oping more efficient and accurate calibration algorithms to the chosen population con-

straints, such as combinatorial optimization (Huang and Williamson 2002; Williamson,

Birkin, and Rees 1998) and deterministic reweighting (Ballas et al. 2007). Rahman and

others have demonstrated how an SM approach coupled with robust validation can

avoid many of the pitfalls of statistical approaches to small-area estimation that are

common in epidemiology and other fields (Das et al. 2019; Rahman 2017; Rahman and

Harding 2016; Rahman et al. 2013).

Challenges in SM

Despite the substantive advantages of SM for small-area estimation and the advent of

faster, more efficient computational platforms, modern techniques are not applied

56 Sociological Methodology 52(1)



broadly in sociological research on U.S. communities. Applied research using SM has

focused broadly on poverty, health, transportation, and public policy (O’Donoghue,

Morrissey, and Lennon 2014; Rahman and Harding 2016; Sakshaug and Raghunathan

2014). However, with the exception of Sakshaug and Raghunathan (2014), virtually

all applied studies focus on contexts outside the United States. For example, synthetic

microdata generated with an iterative proportional fitting approach has been used to

calculate smoking rates across small areas in New Zealand and the United Kingdom

(Smith, Pearce, and Harland 2011; Tomintz, Clarke, and Rigby 2008).

In describing progress and persistent gaps in the development and application of

SM techniques, we must note the important decisions that must be made in any micro-

simulation study (O’Donoghue et al. 2014): (1) the data sources and spatial scope, (2)

the data creation and calibration methodology, (3) which variables to use as population

constraints, and (4) the validation of estimates. To date, the methodological research

has largely focused on data creation and calibration in comparing the relative (dis)ad-

vantages of the three predominant calibration methods: combinatorial optimization,

generalized regression (GREG) reweighting, and iterative proportional fitting

(Whitworth et al. 2017).

In contrast, there is little discussion in the current microsimulation literature on a

rigorous method for selecting population constraints. The selection process is gener-

ally opaque in published SM studies (Huang and Williamson 2002; Smith, Clarke, and

Harland 2009). It might be informed by correlational criteria or possibly stepwise

regression, but reliance on “expert judgement,” convention, or an ad hoc process of

trial and error is more common (Huang and Williamson 2002; O’Donoghue et al.

2014; Smith et al. 2009). The issue of variable selection has received far less attention

than that of calibration techniques. Given the likelihood of multicollinearity and inter-

action effects among candidate variables, the constraint selection task is decidedly

nontrivial. Worse still, including constraint variables that do not enhance predictive

ability could reduce the quality of outputs by making it difficult or impossible for the

SM model to calibrate the microdata weights to the selected population margins.

Voas and Williamson (2000) offered the following considerations in discussing their

choice of population constraints for an SM using UK census tables:

While these tables cover a reasonable cross-section of census topics, it is quite possible that
a better set of eight tables could be chosen. The choice of constraints is guided by three main
considerations: 1) computer resources, as every additional table included will increase the
number of iterations required to achieve a given level of fit, 2) the perceived importance of
the topics, and 3) the extent of correlation with other variables, since fit on unconstrained
tables will be affected by how far those counts have been determined by the constraints.
(p. 351)

Computational limitations have historically been a tremendous barrier to constraint

selection and quantity—and indeed the adoption of microsimulation techniques more

broadly (Orcutt 1957; Wager 1962). But the other points raised by Voas and

Williamson (2000) relate to the theoretical and empirical relevance of possible con-

straint variables, and results are sensitive to selection. Two decades later, Whitworth
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(forthcoming) reiterates these same points in framing constraint selection as an arbi-

trary choice that must be conceptually justified:

Firstly, the researcher must decide which data attributes to optimize against; a choice which
should be driven by the research question. In certain cases, for instance, having an accurate
representation of age, gender, and marital status may be critically important; in others, gen-
der may be unimportant but income and educational status may be critical. After determining
which attributes to optimize against, the researcher then builds constraints from the macro
tables and maps them between the micro and macro data. (p. 15)

Sakshaug and Raghunathan (2014) identified the same constraint selection problem.

In their SM analysis of the National Health Interview Survey, the authors selected vari-

ables on the basis of their “common usage” and recode categorical variables to binary

“to ease computation.” The authors’ validation and robustness tests do not include

varying the selection of constraints.

The additional question of whether and how to collapse, aggregate, or otherwise

“bin” individual constraint variable margins is, to our knowledge, entirely unaddressed

in the SM literature, for example, whether and how to “bin” a 16-category ordinal

income variable to reduce the number of margins to be calibrated. SM practitioners do

regularly bin constraint variables, but the process is ad hoc, almost always undocu-

mented, and without theoretical rationale.

Present Study

Our study has two connected aims. First, our broader aim is to translate the develop-

ment and advantages of contemporary SM from the fields of geography, economics,

and urban planning to sociological research. We draw on topics for which geographic

context has become increasingly important in the United States, including racialized

stratification in labor and housing. Toward this end, our methodological aim involves

combining a generalized reweighting approach to SM with high-quality data from the

ACS. We extend previous research using this technique to include a rigorous treatment

to the problem of selecting population constraints using decision trees, validating

against existing techniques with a variety of out-of-sample statistics. We develop a

generalized SM tool that can be applied broadly to examine a vast array of local

research and policy questions using the ACS, and we demonstrate several use cases

related to geographic and racial/ethnic stratification in labor, housing, and family.

METHODS

TBSM

The technique introduced here uses decision trees to inform both the selection and bin-

ning of candidate constraint variables within an SM model. We call our method “tree-

binned spatial microsimulation.” We motivate the method using a toy example and

then provide details of our actual implementation using ACS data. Our focus, and that

of nearly all studies in the SM literature, is the use of SM for small-area estimation:
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the estimation of a “target variable” or quantity or outcome of interest that is observa-

ble in the microdata but unknown for the small area.

Imagine we want to estimate per capita income (target variable) in a specific town

(small area). We have microdata sampled from the national adult population that allow

us to observe individuals’ income, age, years of education, and occupation. Income is

a continuous variable. The other three are discrete candidate constraint variables whose

categories align with known local population totals (e.g., number of people by age

group) taken from a separate data source such as a census. This is the most common

data structure for SM studies (see Table 1).

We begin by fitting a decision tree to the microdata with income as the response

(dependent) variable and the three candidate constraints as predictor (independent)

variables. A decision tree consists of a series of recursive, binary splits of available

predictor variables, where successive “nodes” exhibit increasing uniformity with

respect to a response variable (Breiman 1993). In our example, the fitted tree (Figure

1) assigns each of the microdata individuals to one of five groups (“terminal nodes”)

for which we report the mean income. The tree is built by greedily selecting the split

that maximizes the “purity” (minimizes the internal variance) of the resulting nodes.

Consequently, decision trees reveal a natural ranking of candidate constraint variables

in terms of their ability to explain the target variable; splits that occur earlier/higher in

the tree are more influential in terms of explaining the variance of the target variable;

subsequent splits contribute less explanatory power. The hierarchical nature of deci-

sion trees means they implicitly capture “interaction effects” between predictors

because selected splits are conditional on splits higher in the tree. We also choose to

use a single decision tree rather than a tree ensemble (e.g., random forest) because our

primary aim is not optimization of prediction accuracy but, rather, to derive a single,

suitable binning strategy from a tree’s split decisions. The multiple trees resulting

from an ensemble is ambiguous in this respect.

Note that in Figure 1, the bottom two terminal nodes created by a split on occupa-

tion exhibit a relatively small difference in mean income ($45,000 versus $40,000).

We could “prune” the tree to remove the occupation split, and the resulting tree would

be less complex but nearly as good at explaining variation in individuals’ income. In

practice, decision tree algorithms often use k-fold cross-validation to decide how to

optimally prune the tree. The cross-validation step calculates the mean and standard

error of the out-of-sample model error (across k folds) for trees of varying complexity.

We use the rpart package in the R language with k = 30 (Therneau and Atkinson

2019). We follow a common rule of thumb in decision tree analysis (the “1-S.E. rule”)

Table 1. Examples of Variables Used in Spatial Microsimulation Study

Constraint Variable Number of Categories Examples

Age (years) 14 (ordinal) 18–25, 26–30, . . . , � 85
Education (years) 7 (ordinal) 0–3, 4–6, . . . , � 16
Occupation 4 (nominal) A, B, C, D
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by selecting the least complex tree that exhibits mean out-of-sample error within 1

standard error of the minimum (Wood 2017). Simulation studies show that this rule of

thumb generally does a good job of preventing the tree from fitting to noise in the

training data (Therneau and Atkinson 2019). A pruned tree need not contain all the

candidate constraint variables present in the microdata. Consequently, a decision tree

provides explicit selection of constraint variables from among the full candidate set.

The decision tree’s split points also reveal a “binning strategy” for the constraint

variables. In our example, age is split at 25 and 60 years old. Years of education is

split at 14, and occupation, which is nominal rather than ordinal in nature, has a split

that groups occupations B, C, and D into one node and occupation A into another.

Because split points are selected to minimize node impurity, the “bins” defined by the

split points reflect a preferred way of grouping individual constraint categories. The

constraint variable binning strategy “deduced” from Figure 1 is shown in Table 2. In

this case, the total number of categories (population constraints) defined by the candi-

date constraints is reduced from 25 originally (14 + 7 + 4) to just 7 after binning.

Figure 1. Example decision tree fit to microdata with income as the target variable.
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Note that a constraint variable’s split points across the entire tree need not be mutually

exclusive (as is the case in Figure 1). In the case of more complex trees, the deduced

binning strategy maintains as much category resolution as is necessary to respect all of

a variable’s unique splits across the tree.

Subsequent calibration of the microdata uses these binned category definitions,

reweighting the microdata to mimic the local (binned) population constraints. For

example, if the decision tree reveals that distinguishing between 60- to 75-year-olds

and those � 75 years old is not particularly important for predicting the target vari-

able, then there is little reason to calibrate the local sample to those individual popula-

tion constraints. It makes more sense to calibrate to the binned population constraint

(the total number of people � 60 years old in this case). It is not the number of con-

straint variables per se that make sample calibration difficult as much as the number

of individual population totals that must be replicated. TBSM effectively reduces the

number of individual constraints and increases the likelihood of successfully replicat-

ing the selected population totals.

Importantly, the use of cross-validation to select appropriate tree complexity helps

guard against overfitting to noise in the microdata. An SM model using a large number

of constraints may “calibrate successfully” (i.e., replicate totals), but this does not

necessarily lead to reliable small-area estimation. In general, TBSM seeks to identify

and use the smallest number of population constraints consistent with strong out-of-

sample prediction of the target variable. In addition to selecting and binning candidate

constraint variables in a theoretically defensible way, decision trees have a number of

secondary but useful features for the purposes of SM models. First, the target variable

can be continuous, binary, or multinomial in nature, and computation time is similar

across cases. Conversely, common “off the shelf” variable selection techniques (e.g.,

stepwise regression) are typically not amenable to multinomial target variables and

tend to be more computationally expensive in the binary (logistic) case. Second, deci-

sion trees are quick to compute and scale well with both the number of observations

and the number of predictors. This is a particular strength in our application using

ACS data (described below), which includes a relatively large number of candidate

constraint variables. Third, decision trees provide an overall measure of relative vari-

able importance, calculated by summing the improvement in prediction attributable to

each variable’s splits across the tree.

Although the methodology described above is applicable to standard SM data

inputs, we use the ACS exclusively for our applied TBSM model. The validation and

Table 2. Example of a Constraint Variable Binning Strategy Deduced from the Decision Tree
Fit in Figure 1

Constraint Variable Binned Categories

Age (years) Three bins: 18–25, 26–60, � 60 +
Education (years) Two bins: 0–15, � 16
Occupation Two bins: [A], [B, C, D]
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demonstration outputs described in the following sections use only data sourced from

the 2012 to 2016 (five-year) ACS. The data inputs take two forms: (1) microdata lack-

ing geographic specificity and (2) block-group-level population counts for individual

constraint variable categories (e.g., the number of households with income less than

$10,000). The latter are extracted from U.S. Census Bureau “summary tables,” which

provide a large potential set of candidate constraint variables. We constructed 21 can-

didates for use within our model (see Appendix Table 1 in the online supplement),

intended to cover a range of socioeconomic and dwelling characteristics. The ACS

microdata are processed to create person-level microdata exhibiting concordance with

the constraint variables in Appendix Table 1 (see Section 1 of the online supplement).

In principle, the TBSM technique places no upper limit on the number of candidate

constraint variables. We use only univariate candidate constraints for simplicity, but

multivariate or cross-tabulated constraints (e.g., age groups by sex) can also be used.

In general, it is beneficial to include any candidate constraint variable that might be

predictive of the target. Because these variables are observed for individual block

groups (more than 200,000 nationally), we can perform SM for any geographic unit

(small area) that is an aggregation of block groups (e.g., census tract, county).

The ACS data provide both household- and person-level constraint variables (e.g.,

an individual’s race and the number of people in that individual’s household). To use

all this information within a single framework, the data inputs to the tree-fitting and

calibration steps consist of person-level observations nested within households, with

household attributes replicated for members of the same household. This is similar to

the strategy used by Bar-Gera et al. (2009) (see also Section 4.3.1 in Muller 2017). The

advantage is that the code base can handle any potential constraint or target variable,

whether household or person level in nature. See Section 1 of the online supplement

for more information on available ACS data.

For our applied model using ACS data, calibration is performed using the GREG

estimator (Tanton et al. 2011). GREG calibration is iterative and continues until the

(reweighted) sample population totals are within some tolerance of the local popula-

tion totals. We leverage the facts that (1) local population totals from ACS summary

tables are accompanied by a standard error, and (2) the decision tree provides impor-

tance weights for each constraint variable. Consequently, calibration quality is mea-

sured by the importance-weighted mean absolute z score across margins, and GREG

iterations are terminated when this quantity falls below 0.125 (this tolerance is arbi-

trary, but sensitivity testing demonstrated this threshold to be appropriate). This allows

the calibration step to put greater weight on the replication of population constraints

with low uncertainty and those associated with constraint variables that are more pre-

dictive of the target variable.

Validation Strategy

A challenge of microsimulation, and small-area estimation in particular, is validation

of model output, given that the techniques are typically used to estimate unobserved

phenomena. In our case, we can compare model output with known small-area
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estimates derived from information in ACS summary tables. We selected four target

variables to use for validation: mean years of schooling, percentage of the population

with public health insurance, mean hours worked per week, and mean annual house-

hold income (see Appendix Table 3 in the online supplement). These include both

continuous (numerical) and discrete (binary) variables; the small-area estimate is a

mean value for the former and a population proportion for the latter. A validation exer-

cise should test model performance using assumptions and data inputs similar to those

for legitimately “unknown” target variables. Consequently, we exclude candidate mar-

gin variables that might give a model artificially high predictive ability (the “excluded

variables” column of Appendix Table 3). For example, model estimates of “mean

years schooling” are nearly perfect when the “education” margin variable is used (as

expected, because they are derived from the same source data). But this is not indica-

tive of model performance for real-world cases in which the target variable is not

necessarily highly correlated with a margin variable.

To assess the value added of our approach, we construct a “baseline” SM model for

comparison with the TBSM model. The baseline model is an attempt at a plausible

“standard” approach to constraint selection. Reviewing applied SM studies (see Table

3), we find that researchers typically select about five constraint variables, with a total

of about 30 individual population constraints. The baseline model uses the same data

as the TBSM model but selects up to five constraint variables via stepwise regression

(optimal model selected via the Akaike information criterion) and then bins categories

to produce approximately 30 total population constraints. The latter step uses the binr

package to produce roughly evenly distributed bins for each constraint variable

(Izrailev 2016). Constraint selection is considerably more ad hoc among practitioners

Table 3. Review of Unique Variables and Constraints Used in Applied Microsimulation
Studies

Reference Variables Constraints

Smith et al. (2011) 4 —
Ballas et al. (2007) 6 18
Campbell and Ballas (2013) 8 —
Lovelace, Ballas, and Watson (2014) 5 40
Anderson (2007) 7 26
Smith et al. (2011) 4 21
Tomintz et al. (2008) 4 18
Morrissey and O’Donoghue (2011) 5 —
Ifesemen, Bestwick-Stevenson, and Edwards (2019) 7 29
Smith et al. (2011) 4 —
Ballas et al. (2007) 6 18
Campbell and Ballas (2013) 8 —
Lovelace et al. (2014) 5 40
Anderson (2007) 7 26
Smith et al. (2011) 4 21
Tomintz et al. (2008) 4 18
Morrissey and O’Donoghue (2011) 5 —
Ifesemen et al. (2019) 7 29
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than the baseline model implies; stepwise regression is not universally used, and there

is effectively no documentation of how researchers choose to (or not to) bin con-

straints. However, we doubt the baseline model is significantly underperforming (and

may well outperform) what one would expect from SM practitioners asked to construct

a model using the same data. We focus on out-of-sample predictive validity to demon-

strate how our TBSM technique performs against the baseline model. Validation is cri-

tically important in ensuring robust estimates and demonstrating that SM can be used

to make valid inferences at the small-area level. Any new proposed technique can be

validated by calculating out-of-sample fit statistics comparing small-area outputs from

synthetic microdata to a known small-area estimate that was not used in the SM

(Ballas et al. 2007; Rahman and Harding 2016; Voas and Williamson 2000) and

demonstrating that the proposed technique outperforms existing techniques using the

same fit statistics.

We first estimate average years of education in the five-county New York City met-

ropolitan area and compare with known estimates. Second, we estimate the four indi-

cators above across six study areas spread across the urban-rural continuum. We use

the urban-rural codes developed by the U.S. Department of Agriculture Economic

Research Service, which were modified and made available by the National Center for

Health Statistics (USDA ERS 2015). We chose two large metropolitan counties

(Philadelphia, Pennsylvania, and San Francisco, California), two fringe metropolitan

counties (Westchester, New York, and Essex, Massachusetts), and two small metropol-

itan counties (Lee, Alabama, and Bibb, Georgia). TBSM model results are compared

with summary table values at the census-tract level. Descriptions of all validation test

statistics can be found in Section 2 of the online supplement.

Last, we provide two examples of TBSM to estimate unobserved phenomena at high

spatial resolution. Our demonstrations use the considerable household- and person-

level detail in the Public-Use Microdata Sample (PUMS) to construct unique target

variables that are not available in small-area summary tables. In short, any variable that

can be calculated from either household or person PUMS records is eligible for small-

area estimation across the United States. Here we focus on two such variables within

Philadelphia County: (1) the proportion of the census-tract population (2012–2016)

who have children and work in essential occupation, stratified by race/ethnicity, and

(2) the proportion of the census-tract population (2012–2016) living below the federal

poverty threshold and in households that spend more than 50 percent of monthly

income on rent or owner costs, stratified by race/ethnicity.

RESULTS

Validation Results

Overall, the validation exercise suggests the TBSM approach generates estimates in

broad agreement with known values (see Table 4). Figure 2 presents out-of-sample

predictions of tract-level average years of education across all of New York City using

a conventional approach and our tree-based approach. Our method provides a high

relative likelihood (0.926), low absolute percentage error (0.023), and high variance
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explained (R2 = 0.832). In contrast, the stepwise selection method performed much

worse on all three fit statistics. An important feature of this validation exercise is

demonstrating the advantages of the tree-based method for avoiding shrinkage to the

global average, a common feature of most small-area estimation techniques. These

patterns are largely replicated when we extend this validation test to a wider set of

urban-rural counties and target variables (see Figures 1–5 in the online supplement).

The tree-based method consistently performs as well or better than the conventional

approach.

Example 1: COVID-19 and the Racialized Intersection of Labor and Childcare

We present two examples using our method to predict target variables that are

observed in the PUMS but unavailable at the tract level. First, we estimate the propor-

tion of the census-tract population (2012–2016) who have children and work in essen-

tial occupations, stratified by race/ethnicity (Figure 3). Examining local variation in

this target variable is important to contemporary sociological research for several rea-

sons. Building on the debates around “essential” workers during the COVID-19 pan-

demic, we adopt the American Civil Liberties Union’s (2020) coding of census

occupational categories into an aggregate “essential worker” category. From a rela-

tional class structure perspective, this corresponds roughly to what is colloquially

known as the working class, namely, occupations that are relatively low wage and tend

Figure 2. Out-of-sample validation results comparing observed estimates of tract-level mean
years of educational attainment in the five counties of New York City with (1) the tree-based
spatial microsimulation approach and (2) a conventional approach using stepwise regression
to select constraints.
Note: ACS = American Community Survey; TBSM = tree-binned spatial microsimulation.
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to require in-person, rather than virtual, laboring conditions. Scholars across sociology

and public health have discussed the racialized distribution of occupational risk for

infection and mortality during the COVID-19 pandemic, but these analyses draw on

national data or data from specific sites (Laster Pirtle 2020; McClure et al. 2020).

Other studies have more broadly examined increasing racial segregation and labor

fragmentation at higher levels using ACS data, but they have not been able to look at

the overlaps of such variables at a high spatial resolution (Lichter, Parisi, and Taquino

2012). Many studies have examined the evolving family complexity in the United

States using ACS data at a national or state level (Bloome 2017; Maralani 2013), but

these studies increasingly take a longitudinal perspective to examine evolving cohabi-

tation patterns and socioeconomic implications, including racialized contours (Carlson

and Corcoran 2001; Williams, Simon, and Cardwell 2019). Still, empirical research is

needed on the geographic distribution of these patterns. In terms of the COVID-19

pandemic, essential workers experience much higher risk that intersects with the lack

of social safety nets related to unemployment and childcare in the United States. It is

important to consider where parents living with children are exposed to the compound

risks for infection at work, unemployment (with associated loss of employer-provided

insurance, which may cover dependents), and increased need for childcare. As noted

earlier, these types of compound risks are highly racialized, especially as they intersect

with entrenched systems of urban racial segregation.

Our small-area estimates in Figure 3 illustrate the stark geographic concentration of

this compound risk in Philadelphia, stratified by race/ethnicity. Essential workers liv-

ing with children in Philadelphia are overwhelmingly non-Hispanic Black, and

extremely segregated from similar populations racialized as non-Hispanic white or

Hispanic. During the COVID-19 pandemic, these estimates could be used to guide

policy around the availability of testing sites and the delivery of social safety net pro-

grams to neighborhoods most at risk for infection, loss of employment, and unmet

childcare needs. From a theoretical perspective, sociologists can use these local data

Figure 3. Small-area estimates of the proportion of the census-tract population (2012–2016)
who have children and work in essential occupations, stratified by race/ethnicity.
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across multiple ACS years to understand patterns of change within and between neigh-

borhoods, comparing across geographies in the United States and reflecting on nuance

that is often lost in discourse around national or state-level statistics.

Example 2: The Unequal Burden of Housing

Second, we estimate the proportion of the census-tract population (2012–2016) living

below the federal poverty threshold and in households that spend more than 50 percent

of monthly income on rent or owner costs, stratified by race/ethnicity (Figure 4). This

level is often characterized as extreme housing cost, and households in this category

are at high risk for eviction, particularly very low income households. As the cost of

housing has exponentially increased across the United States, sociological research

has sought to understand its patterns, determinants, and consequences, especially as it

intersects with racial segregation and racialized housing markets in urban areas (Faber

2020; Howell and Korver-Glenn 2020; Sewell 2016). Contemporary research has

applied relational perspectives to the intersection of poverty and rental markets. For

example, Desmond and Wilmers (2019) use national data to ask whether the poor pay

more for housing, demonstrating that landlords often derive greater profits from rais-

ing rents in poorer neighborhoods where property values and tax burdens are lower. In

terms of the costs of home ownership, often seen as a tool for social mobility and

building wealth, Taylor (2019) examined how, following the Housing and Urban

Development Act of 1968, predatory subprime housing markets led to disproportio-

nately high housing costs for Black homeowners. Scholars have drawn connections

between this history of exploitative housing practice and policy and the contemporary

COVID-19 pandemic; individuals living with extreme housing costs are far less

equipped to absorb shocks related to unemployment or acute health events, and the

Figure 4. Small-area estimates of the proportion of the census-tract population (2012–2016)
living below the federal poverty threshold and in households that spend more than 50 percent
of monthly income on rent or owner costs, stratified by race/ethnicity.
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lifting of eviction moratoriums during the pandemic has contributed to surges in

homelessness, infection, and mortality (Benfer et al. 2021).

Figure 4 illustrates the geographic concentration of extreme housing costs across

Philadelphia. Relatively few individuals racialized as non-Hispanic white live in

households with incomes below the poverty threshold and spending more than 50 per-

cent of monthly income on rent or owner costs. However, rates are very high for indi-

viduals racialized as non-Hispanic Black, representing more than 20 percent of the

population in many neighborhoods, particularly in the west and north sections of the

city.

DISCUSSION

In this study, we introduced TBSM, a technique that uses decision trees to automati-

cally select and bin population constraints for use within SM models. We demonstrated

that our implementation of TBSM using public data from the ACS provides a reliable,

scalable small-area estimation strategy that leverages the full information contained in

the largest survey of social, economic, and demographic data in the United States. We

tested the model across a diverse set of counties using an out-of-sample validation

strategy, indicating that TBSM produces census tract–level estimates that are more

accurate than estimates produced by a standard SM approach. We then applied this

technique to estimate more complex cross-tabulated summaries that are not available

in public census tables, including local indicators related to the racialized distribution

of risk in labor and housing. These indicators are often studied at a higher geographic

level by sociologists, and granular nuance is important and timely for considering the

local causes and consequences of the inequitable spread of COVID-19 throughout the

country. Particularly in our example of Philadelphia, we saw extreme racialized segre-

gation along these lines. Researchers often want to analyze these types of policy-

relevant indicators that have high spatial resolution and high attribute resolution, but

with the publicly available census data, they are forced to choose one at the expense of

the other. Here we demonstrated how we can estimate two such indicators using only

publicly available data, but our estimation framework can be easily applied to any

combination of variables collected in the ACS microdata.

Our approach is not without important limitations. We have improved on several

key obstacles identified in the implementation of SM techniques more broadly in

sociological study (issues related to computation and data synthesis, selection of con-

straint variables and appropriate binning), but our validation results suggest that

researchers should exercise caution in applying this method to very rural counties and

perhaps consider combining data across nearby counties (or combining similar census

tracts). Still, validation tests, particularly in metropolitan areas and suburbs, show how

TBSM can significantly improve on the performance of more conventional (and arbi-

trary) methods of constraint selection, leading to more accurate small-area estimates

of unobserved indicators. This will be important for applying sociological theories as

evidence mounts of very local patterns of extreme segregation in U.S. cities, which
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until now have been examined mainly using national data sets or disparate city-

specific efforts.

Future Directions

We noted earlier that the target variable can be any variable (continuous or binary)

that can be defined for either household or person PUMS records. That is, the target

variable must be a function of the “raw” PUMS variables (of which there are many).

The examples presented here are straightforward, constructing the target variable as a

fairly simple combination of other variables. However, one could construct a target

variable defined by a more complex combination of the PUMS variables. This opens

the possibility of using other (non-ACS) surveys to create the target-defining function.

For example, the ACS is of no direct use if we wish to estimate household gasoline

consumption; that information is not solicited by the ACS questionnaire. The National

Household Travel Survey (NHTS), on the other hand, does report respondent gasoline

consumption along with a set of household-level characteristics. However, as a much

smaller survey, the NHTS cannot provide reliable estimates for small areas. If there is

sufficient overlap between NHTS household characteristics and those in the PUMS,

one can fit a model to the NHTS to estimate gasoline consumption for PUMS house-

hold records (Ummel 2016). This quantity becomes the target metric for subsequent

small-area estimates using the technique described here. In this way, the application of

our technique—and the range of target variables eligible for small-area estimation—

can be greatly expanded.

CONCLUSIONS

Among sociologists, demographers, economists, and other scholars studying the persis-

tence and widening of inequality in the United States, spatial contours have taken on

central importance. The increasingly fractal spatial dimensions of social life in

the United States require rigorous small-area estimation strategies to answer high-

dimensional, policy-relevant research questions at a local level while maintaining con-

fidentiality in the underlying data. These local estimates based on publicly available

census tables can inform a research agenda focused on spatial equity and open up a

variety of possibilities for linkage with other public and private data sources that are

increasingly geocoded.
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